Tak nevím, jestli mám začít příměrem o Aristotelovské definici moudrosti, nebo příměrem o vaření guláše. Proto začnu oběma. Tedy už filosofové starého Řecka měli poznání rozděleno na 4 stupně, které bychom dnešní terminologií označili jako - data, informace, poznání a moudrost. Nebudu se zabývat podrobnou definicí jednotlivých stupňů, protože jistě tušíte, že když vás ambiciozní řiťolezec někde v korporaci zaplavuje excelovými tabulkami - bude v tom hodně dat, možná nějaká informace, ale minimum moudrosti.
Takže když experimentujete s elektronikou můžete na kontaktním poli i jinak, postavit stovky zkušebních obvodů, na nich vykonat tisíce měření - čímž získáte spoustu dat, ale stejně nemusíte dospět k obvodu, který funguje, protože někdy jste jako kuchař, který vaří guláš, a - ví "že to není ono", ale neví "co tam přidat" neb má zmatek v chutích jednotlivých koření.
Proto je nutné mít postup jak dospět "od dat k poznání" nebo dokonce k moudrosti !? A u mně jeden z těchto postupů je "udělat z obvodu vzoreček" a s tím si hrát. Tedy asi to zní divně, protože celé elektro se zdá jako vyčerpávající cesta - opačným směrem - jak dospět od "vzorečku v učebnici" ke konkrétní hodnotě přiletované součástky. Přesto je někdy "ta těžká chvíle v životě lidském", kdy je třeba udělat to naopak. Výsledkem takových snah, je celý adresář v mém notebooku kde mám "excelové obvody" - tedy celé elektrické obvody typu třeba DDS, o které tady už byla řeč, přepsané jako výpočty v excelu. Díky takovém postupu se osvobodíte od "teroru miliampérů" a impedancí a jasně se vám rozliší, které vlastnosti elektrického obvodu jsou nedostatky dané principem zapojení - a tedy neodstranitelné. A které jsou dané "ďáblem, co se skrývá v detailech" a tedy potenciálně odstranitelné.
Předvádět excelovou tabulku na blogu je poněkud nešikovné, tak si jako příklad vezmeme něco jiného : Měl jsem veliký zmatek v otázce jak funguje "automatické řízení zesílení" tedy AGC - protože to je prototyp obvodu s tak velkým množstvím "černé magie", že se v tom vidlák může ztratit. Principiálně je to smyčka zpětné vazby, ale každá smyčka zpětné vazby má nějakou "porovnávací hodnotu", ke které se snaží "regulovanou veličinu" přitáhnout - schválně najděte mi na Internetu schémátko rádia s AGC, ze kterého by vyplývalo kde taková "porovnávací hodnota vzniká" a jaká je jejjí hodnota ??
Mimochodem by teď měl být odstaveček "k čemu je to dobré" - Kouzlo je v tom, že signál na atnéně rádia kolísá, ale my chceme aby "to hrálo stále stejně" proto se signál po cestě od antény k reproduktoru prožene zesilovačem s měnitelným zesílením, které se mění tak, aby hlasitost v reproduktoru byla pokud možno konstantní - a nemuseli jsme ji nastavovat více než jenou - při zapnutí rádia...
Takže jsem se trápil s matematikou ve stylu zesilovač 10x je V*10 atd. a přitom jsem přišel na jediné - nejstabilnějších smyček řízení zesílení se dosáhne, když se reguluje veliké množství zesilujících stupňů zároveň. Tak jsem ze zoufalství položil na toto téma dotaz do mailové konference HW list, kde se mi od "pánů inženýru" dostalo, místo nápadů, jenom "bullshit" typu "najdi si to na googlu". (Páni inženýři se zjevně nepohybují na levelu "moudrost" a kdoví jestli se vůbec pohybují aspoň na levelu "poznání").
Nicméně jsem poslechl a ve většině článků bylo moře matematiky a neustále se tam opakoval "exponenciálně řízený zesilovač". Když máte v nějakém článku moře vzorečků a tabulek, - je to známka, že je tam mnoho dat a málo moudrosti, tak jsem potřeboval ty věci nějak zobecnit. Mně při "excelových simulacích" nejlépe fungovaly napětím řízené zesilovače se spoustou stupňů řízených jedním napětím a "oficiální autority" doporučují exponenciálně řízené zesilovače. Není to náhodou protože, pokud máte N stupňů zesilovače který každý je řízen stejným řídícím napětím tak celkové zesílení ne N-tá mocnina řídícího napětí !? A pokud máte N-tou mocninu řídícího napětí , kde N je 3-5 - tak se XN nepříliš liší od eX je to tak ?
Tím jsme dospětli do dat k infromacím a zbývá už jenom dospět od informací k poznání. Zásadní otázka tedy je proč je dobré, když se zesílení vysokofrekvenčního zesilovače exponenciálně mění s řídícím napětním ? Takže jsem experimentoval v excelu i v simulátoru elektrických obvodů a dospěl jsem k tomuto obecnému závěru - pokud se vstupní signál mění přes několik dekád - je nutné aby se "informace o vstupní amplitudě" měnila taky přes několik dekád. - tato informace může mít formu napětí - a existují AGC obvody typu "feed forward" které usměrní napětí na vstupu zesilovače a podle něho rovnou nastaví zesílení - bez nějakých smyček zpětné vazby. Problémeček je v tom, že nastavovat zesílení napětím, které kolísá od voltů po mikrovolty - není dvakrát snadné. Proto je lepší aby zesilovač byl exponenciální (nebo exponenciálnímu průběhu blízký), protože potom - díky zpětné vazbě je řídící napětí - ve zpětné vazbě - de-facto logaritmus amplitudy na vstupu - a s takovými hodnotami které se mění o 3 volty - ne o 103 voltů - se pracuje daleko snáze. Je pozoruhodné, že tuto větu jsem nikde v elektronické literatuře nevyčetl - buď je to "Kubáčova chybějící věta" nebo jsem prostě příliš blbý a měl jsem to pochopit ze vzorečků - kde je to "implicitně" obsaženo.
Zbývá poslední nepatrný problémeček - jak se s takovým "matematickým modelem elektrického obvodu" pracuje. Tedy mým oblíbeným je simulátor elektrických obvodů zvaný "Simetrix", ve kterém si můžete nadefinovat součástku zvanou "non lineatr transfer function" - což ve skutečnosti je - součástka - vzoreček. Takže si nadefinujete moře součástek-vzorečků a hrajete si s nimi jakoby to byly mixéry, filtry, zesilovače, operační zesilovače - a tak.
Takže sledujte obrázek -V1, je zdroj signálu V2 je zdroj změn amplitudy signálu - ty se vzájemně násobí - viz vzoreček nad ARB1 - tím nám vznikne "kolísající signál" pro samotný obvod. ARB2 - je exponenciální zesilovač kde N1 - je signál a N2 je napětí řídící zesílení - vidíte vzoreček ? ARB 3 je "precizní usměrňovač" který usměrňuje bez diod - funkcí "absolutní hodnota" ;-))). ARB 4 je "operační zesilovač" - který porovnává skutečnou a žádanou hodnotu amplitudy. Ta je nastavena zdrojem V3 na hodnotu 100mV. A pak už jsou dvě "skutečné součástky" které tvoří dolní propust pro filtraci řídícího napětí
Samozřejmě, že se v diskusi vyskytnou šťouralové, kteří budou říkat, "obkreslit blokové schéma zpětné vazby umí každý" - pozoruhodné je, že tohle "vzorečkové schémátko" skutečně funguje jako AGC - vizte výstup simulace, kde zeleně je vstupní (silně kolísající) napětí a červeně je "výstup na žádané hodnotě okolo 100mV - tedy v matematické verzi to funguje a hlavně se s tím dá hrát ve stylu "co se stane když změním toto". Takto se dá hrát i se skutečným elektrickým obvodem, ale u reálných součástek ( nebo jejich simulací ) nemáte - na rozdíl od "čistých vzorečků" nikdy tu jistotu, že vám elektrický obvod nekazí nějaké parazitní parametry součástek. Takže naopak - pokud obvod nefunguje ani jako vzoreček - "zanechte vší naděje" a vydejte se jiným směrem - jasné ?
Tím jsme pro dnešek probrali vše - zbývá už jenom tradiční rada pro brunety - kdysi byly brejle poznávacím znamním inteligentní brunety - viz například virutální "milenka všech geeků" Tina Fey - dneska, ale bohužel nosí brejle každá druhá duchaprázdná blondýna ze Stodolní - takže je čas najít si nějaký jiný Geek chic atribut.
Poznáma při druhém čtení - jenom jako uklidnění pro šťouraly - ano vím, že existuje ještě druhý důvod proč jsou teoretici zamilovaní do zesilovačů s exponenciální závislostí zesílení na řícícím napětí - protože pak je smyčce AGC jedno jestli signál kolísá z 10 na 1 uV nebo ze 100 na 10 uV -což je důležité hlavně z hlediska relativně konstatní rychlosti odezvy smyčky AGC, která paradoxně u rádia není tak důležitá, protože rozdí mezi 10 a 100 mS než se smyčka ustaví - stejně nepoznáte.
Poznámka při třetím čtení - exponenciální řízení zesílení stejně reálně neexistuje - ve skutečnosti je to vždy vysoká mocnina řícícího napětí, která aproximuje eX.